

TOU Tariff Analysis and Program Development

A project of USAID's Energy Efficiency for Clean Development Program (EECDP)

Haider Khan, ICF

2014

Introduction

DSM - Energy Efficiency

- Permanent reduction in consumption
- Reduction occurs across most hours of the load curve
- May or may not reduce system peak demand
- Provides same or better energy service with fewer kWh

DSM - Demand Response

- Temporary reduction in consumption
- Reductions targeted at specific hours, typically coincident with system peak
- May be associated with curtailment of service
 - But may not be perceived as curtailment

Demand Response

- Load Curtailment
 - Direct load control
 - Interruptible load control
- Dynamic Pricing
 - Real time Pricing
 - Time of Use (TOU)
 - Critical Peak Pricing (CPP)

Demand Response

- Utility-controlled switches on specific devices, e.g. AC units, water heaters
 - Pro
 - Quick demand reductions
 - Cons
 - Requires large number participation
 - Generally not applicable to industrial customers. Can be applied to most smaller customers with at least one appropriate load

Types of Demand Response Programs -Interruptible Load

- Contract with customers to reduce demand as needed to stabilize grid
 - Pro
 - Applicable to industrial customers
 - Large demand reduction potential
 - Cons
 - Requires lead time good forecasting tools

Types of Demand Response Programs - Time Based Programs

- Time of Use: Price electricity higher in peak periods
 - Can be applied to any customer class
- Critical peak pricing: for the highest peak hours
 - Difficult to implement as require advanced forecasting models
- Real time pricing: changes by hour
 - Complex to implement

Time of Use Rate Structure

- Energy used in the blue shading is charged at off-peak rates
- Energy used in the red shading is charged at on-peak rates
- On-peak times are for non-holiday weekdays.
- Weekends / holidays are always off-peak.

Potential Impact of TOU Rate Structure

After TOU Implementation

Why ECG Needs to Implement TOU Rate Structure

- Industrial customers are using high demand end loads during peak hours that can easily be shifted to off-peak hours
- Smart Meters provide ECG the ability
- Cost of generation varies with demand
- It will help stabilize the electricity supply resulting in less voltage fluctuation
- It will help reduce electricity outage

Sample Industrial Customer Load Review

How Will ECG's Customers Benefit From TOU Rate Structure

- System reliability improvement
- The targeted industrial sector will be able to save money

Approach

- Activity 1: Document Review
- Activity 2: Conduct Metering Data Analysis.
- Activity 3: Determine Utility Costing Periods and Develop TOU Tariff Strategies
- Activity 4: Create Marketing Plan and Support Pilot Rollout

Baseline Energy Use

Electricity Use by Tariff Class

Tariff Class	Customers in Tariff Class	% Total Cust.	Total Sales (GWh)	% Sales	Total Demand (MW)
Residential	2,160,000	99 %	3,228	35%	1008
Non-Residential			1,525	16%	
Industrial	1,645	< .01%	4,224	45%	1008
Street Lighting	N/A	N/A	377	4%	N/A
Total	2,161,645		9354	100%	2,016

Electricity Sector Revenue Shortfall

Year	Generation COS	Transmission	Distribution	ECG Revenue	ECG Revenue
	(million US\$)	COS (million	COS (million	Requirements,	Requirements, ECG
		US\$)	US\$)	COS study (million US\$)	(million GHc [million US\$])
2014	764	96.4	433	442	3,389.3 [1,118.5]

System Load Review

System Demand Bin	% 2013 Hours	% Cumulative Hours
0 <mw<=1000< td=""><td>0%</td><td>0%</td></mw<=1000<>	0%	0%
1000<=MW<1100	0%	0%
1100<=MW<1200	0%	1%
1200<=MW<1300	3%	4%
1300<=MW<1400	14%	18%
1400<=MW<1500	27%	45%
1500<=MW<1600	28%	73%
1600<=MW<1700	16%	89%
1700<=MW<1800	6%	95%
1800<=MW<1900	4%	98%
>1900	2%	100%

System Load Review

Time	System Load 1500-1700 MW	System Load >1700 MW
12-1 am	2%	0%
1-2 am	1%	0%
2-3 am	0%	0%
3-4 am	0%	0%
4-5 am	0%	0%
5-6 am	1%	0%
6-7 am	0%	0%
7-8 am	0%	0%
8-9 am	1%	0%
9-10 am	1%	0%
10-11 am	1%	0%
11 am -12 pm	2%	0%
12-1 pm	1%	0%
1-2 pm	2%	0%
2-3 pm	2%	0%
3-4 pm	3%	0%
4-5 pm	2%	0%
5-6 pm	5%	1%
6-7 pm	14%	26%
7-8 pm	17%	34%
8-9 pm	17%	29%
9-10 pm	15%	9%
10-11 pm	9%	1%
11 pm -12 am	4%	0%

System Load Review

Literature Review

Country	Ratio of on-peak to off-Peak rates	Pricing Periods
Algeria	8.2	3
Iran	5.4	3
Israel	21.13	3
Egypt	4.12	2
Jordan	9.2	2
Lebanon	21.2	3
Morocco	13.8	3
Syria	6.5	3
Tunisia	10.1	4
China		
(Jiangsu)	3.8	3
Korea	3.58	3
South		
Africa	7.3	3
Taiwan	2.67	3
Thailand	2	2
Turkey	2.59	3
Vietnam	3.12	3

Snapshot of Industrial Electricity Price Elasticity

Market	Date of Study	Own-price Elasticity	Substitution Elasticity
Ontario Canada	1997	-0.07 to -0.09	0.7 to 0.11
CA, NY, and	1984	-0.014 to -0.02	
Midwest			
California US	1983	-0.03	
Ontario Canada	1986	N/A	
Texas US	1984	-1.1	0.21
California US	1983	-0.15 to27	N/A
California US	1984	-0.02 to -0.09	
California US	1991	-0.04 to -0.09	
Ontario Canada	1983	0 to -0.24	
US	1978	-0.41	
US	1978	-0.78	
US	1978	-1.01	

Analysis

		Substitution Elasticity			
		0.02	0.15	0.27	
Own Price Elasticity	- 0.41 - 0.78 - 1.01	Calculat On-Pe Off-Pe	t ion for Eac l eak Consum eak Consum Revenue I	h Combination: ption Change ption Change mpact	

Scenario Analysis

	Scenario 1 (Recommended)	Scenario 2	Scenario 3
Ratio of On-Peak to Off-peak	2	4	8
TOU Off-peak discount	15%	35%	55%
Estimated On-Peak Consumption Change	-8%	-13%	-18%
Estimated Off-Peak Consumption Change	-1%	-2%	-6%
Estimated Revenue Impact	0%	-2%	-4%
Potential System Peak Load Reduction (MW)	73	121	167

Proposed Tariff

	LV	MV	HV	HV - Mines	Time Period ⁱ	Hours per Day	Total Hours per Year	% Total Annual Hours
Current Energy Charge (Ghp/kWh)	51.71	40.02	36.80	58.41	All Hours	24	8760	N/A
Proposed Off-Peak Energy Charge (Ghp/kWh)	43.95	34.02	31.28	49.65	11 PM to 6 PM	19	6935	79%
Proposed On-Peak Energy Charge (Ghp/kWh)	87.90	68.04	62.56	99.3	6 PM to 11 PM	5	1825	21%

Industrial TOU Program Savings & Costs

Program Metric	2015	2016	2017	2018	2019
Incremental MW Savings	0	31	36	50	56
Cumulative MW Savings	0	31	36	50	56
Annual Program Costs (\$Millions, USD)	\$0.45	\$0.3	\$0.3	\$0.3	\$0.3
Annual Program Costs (Millions GHc)	GHC 0	GHc 717	GHc 478	GHc 478	GHc 478

Industrial TOU Program Cost-Effectiveness

Utility Cost Test (UCT) Ratio	4.7
Net UCT Benefits (\$Millions)	\$36.6
Net UCT Benefits (Millions GHc)	GHS 110.9
Levelized cost per kWh (\$)	\$2.25
Levelized cost per kWh (GHc)	GHS 6.8
Levelized cost per kW (\$)	\$10
Levelized cost per kW (1000 GHc)	GHS 33.30

THE AMERICAN PEOPLE

Goals/Program Alternatives

Achievable MW Savings Potential (Cumulative, 2019)	Market Transformation Potential	Equity	Political Feasibility	Program Complexity	Implementation Risk	Net Utility Benefits (\$Millions)
56	Not applicable.	Equity within the industrial sector will be determined by the regulatory requirements of the tariff (e.g., whether it is opt-in or opt-out). Overall, the tariff increases system-wide equity by reducing cross-subsidies and outages caused in part by energy charges being misaligned with energy costs.	High. Required by policy. Some industrials may initially object due to inflexibility in system operation.	Low. Start-up could be complex. Ongoing implementatio n involves low complexity.	Low. Requires minimal infrastructure investment with potentially high system benefits.	\$36.6

THE AMERICAN PEOPLE

USAID

Recommended Next Steps

- Create marketing brochures to clearly communicate the program details. Implement a voluntary pilot with a small set of industrial customers.
- Revise the program based on the findings of the pilot and launch 'opt-in' TOU program to build momentum. (3-6 months from program start date).
- Conduct evaluation, measurement and verification (EM&V) activities. Revise the program requirements and launch a mandatory program with exemptions for certain industries e.g. continuous process petrochemicals. (12-18 months from program start date).

Customer Messaging for TOU pricing

- Shift the energy intensive end-use to off-peak hours to save money
- If your facility has on-site generation use it during on-peak hours
- Manage electricity use for all end-uses; e.g. Charge batteries and fill compressed air tanks at night
- Implement an energy conservation plan and upgrade inefficient equipment

Motivation

- Chronic capacity and energy shortages
- The recent tariff increase to about US \$0.20/kWh can cause an adverse impact on the competitiveness of Ghanaian industries

Goal

 Provide technical assistance to address load management by developing a Time of Use (TOU) tariff analysis and program design targeted at the industrial sector

Why Industrial Sector

- Customers already have the necessary infrastructure in the form of smart meters
- Customers electricity demand holds the greatest potential for load modification,
- Customers accounts for a high share of the total electricity usage

Potential

- Various scenarios were analyzed resulting in <u>economic</u> potential demand reduction ranging from 73MW to 167MW.
 - Due to the already high electricity prices, the scenario that results in the least aggressive pricing is recommended to ensure widespread acceptability.
- The recommended tariff is estimated to result in 56MW <u>achievable</u> potential which is around 5% of the industrial load or 2% of the system load by 2019.

Proposed Rate Structure

	LV	MV	HV	HV - Mines	Time Period ⁱ	Hours per Day	Total Hours per Year	% Total Annual Hours
Current Energy Charge (Ghp/kWh)	51.71	40.02	36.80	58.41	All Hours	24	8760	N/A
Proposed Off-Peak Energy Charge (Ghp/kWh)	43.95	34.02	31.28	49.65	11 PM to 6 PM	19	6935	79%
Proposed On-Peak Energy Charge (Ghp/kWh)	87.90	68.04	62.56	99.3	6 PM to 11 PM	5	1825	21%

Program Recommendations

- It is recommended the program be launched as a voluntary pilot for a period of 3-6 months.
 - The program should be revised based on the outcome of the pilot,
- 'Opt-in' program should be launched for a period of 12-18 months.
 - This will give sufficient time for the program to mature,
- Launch a mandatory TOU tariff program
 - (With necessary exemptions)

