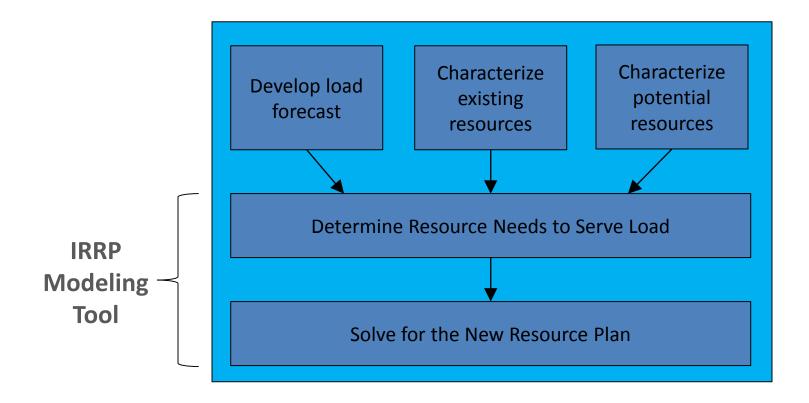


Integrated Resource & Resilience Planning (IRRP) for the Power Sector

USAID Training – March 6, 2017

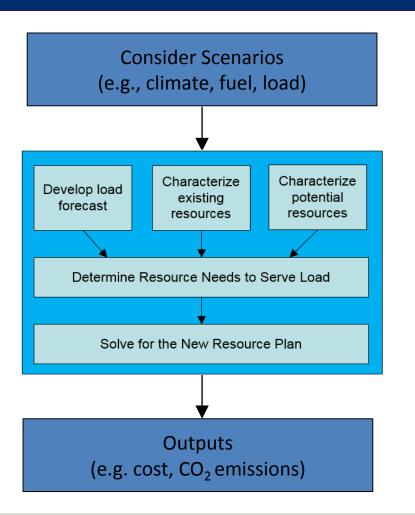
Session 4: What Planning Looks Like PART TWO - MODELING

Presenters: Maria Scheller, Molly Hellmuth



IRRP Optimization - Considering Scenarios, Risks, and Alternatives

Presenter: Maria Scheller



Integrated Resource Planning Process

Risk Analysis and Scenarios

Defining Scenarios

- Set of model inputs
 - e.g., load forecasts, fuel prices and availability, technology costs and availability, resource availability, etc.
- Reference scenario
 - reflects generally expected or likely forward conditions
- Alternative Scenario
 - alternative inputs that reflect uncertainties/risks

Illustrative Scenarios

Scenario 1

Reference load

Expected gas price

Mild drought

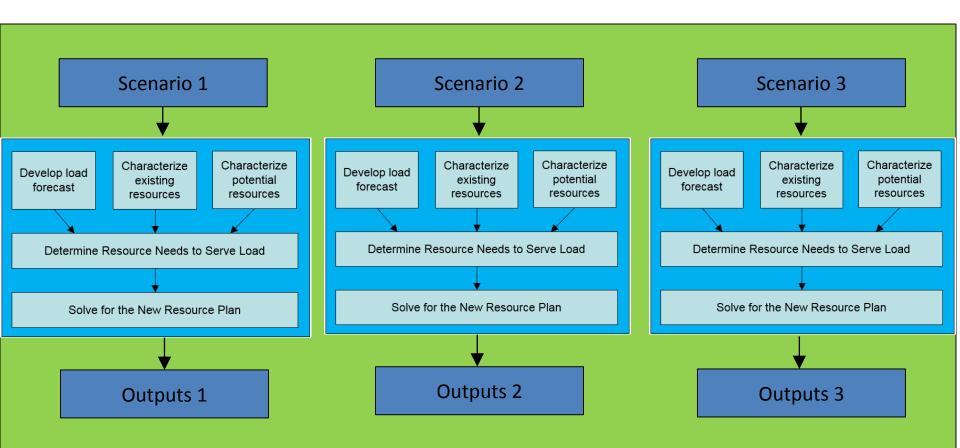
<u>Scenario 2</u>

High load

Expected gas price

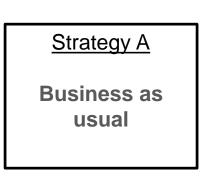
Severe drought

Scenario 3


Low load

High gas price

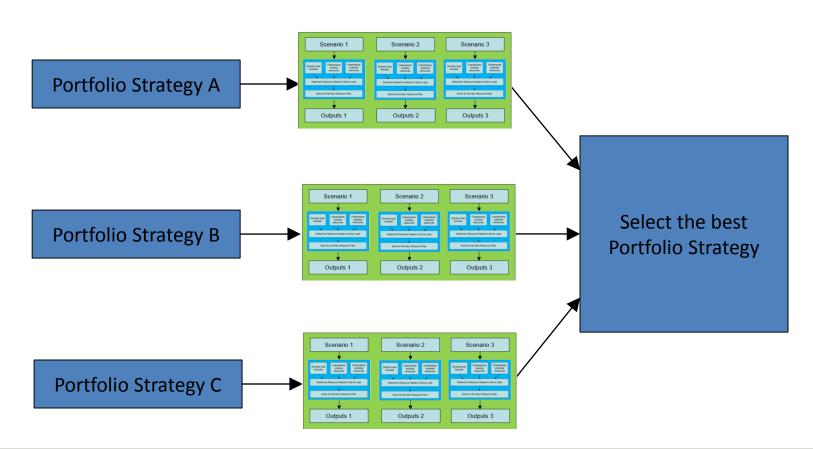
No drought


Multiple Risk Scenarios

Defining Alternate Investment Portfolio Strategies to Meet Requirements

- Business as usual strategy
 - e.g., least-cost investment strategy
- Alternative strategies, e.g.,
 - require 50% renewables in the resource mix by 2030
 - require 20% hydro
 - carbon emission limits
 - electricity import/export goals

Illustrative Strategies


Strategy B

High renewable generation investment

Assess Multiple Investment Portfolio Strategies

Metrics & Scoring

- For each portfolio strategy, metrics are evaluated, e.g.,
 - Were the strategy goals met in each scenario
 - Net present value of revenue requirements
 - Wholesale power prices
 - Residential load served
 - Unserved energy
 - Build plan volatility
 - GHG emissions
- Metrics are appropriately weighted, statistically analyzed, and combined to determine a score for each strategy
 - Strategies are ranked based on their scores
 - The resource plan of a highly-ranked strategy is more resilient under different scenarios

Least-Regrets Resource Plan

- The least-regrets resource plan is one which provides the highest performance under the selected metrics
- We are working to derive such a resource plan for Ghana and Tanzania based on jointly developed scenarios and metrics
 - Collaborative process
 - Collective input from Ghana and Tanzania stakeholders
 - Inputs, feedback, discussions from/with stakeholders is crucial
- The modeling tool is the foundation for getting to this stage (middle of next year)
- Learning the IPM tool is the first step...

Integrating Climate Risk and Resilience into Modeling

Presenter: Molly Hellmuth

Methodology

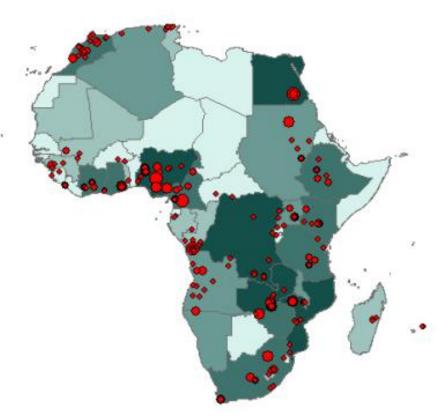
TASK 7: Resilience Assessment

- Crosscutting
 Power System
- Quantitative
 Modeling
- Qualitative
 Assessment

Scenario Drivers	TASK 2: Load Forecasting Analysis	Baseline		
Climate, economic, demographic, financial, regulatory, policy, and technological change	Scenarios		lodeling	
	TASK 3: Generation Assessment	Baseline	ast-cost M	
Climate, economic, demographic, financial, regulatory, policy, and technological change	Scenarios		grated Lea	
	TASKS 4 & 5: Transmission and Distribution System Assessment	Baseline	TASK 6: Integrated Least-cost Modeling	
Climate, economic, demographic, financial, regulatory, policy, and technological change	Scenarios			

Integrated Resources and Resiliency Planning

Risk and Resiliency: Climate Scenarios


• What are climate scenarios?

- A *plausible* future climate, or the difference between some plausible future climate and the present-day climate
- Can be outputs of GCMs, analogues of past events, incremental changes
- Climate scenarios are used in impact models. For example:
 - Hydropower, supply and demand, load forecasting, transmission and distribution
- Scenario Choice
 - Recommendations based on preliminary analysis
 - Participatory exploration and discussion
- Potential scenarios
 - Increase in frequency and intensity of extremes: temperature, drought, flood
 - High or low emissions scenarios projections of key climate variables

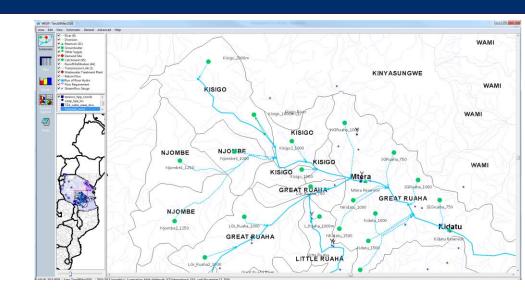
Time period	Scenario #1	Scenario #2	Scenario #3
2040- 2060	Monthly temperature increase from 1- 3°C	Monthly rainfall, maximum, and minimum temperature projections	Increasing frequency of El Nino events

Focus on Hydropower Modeling in Tanzania

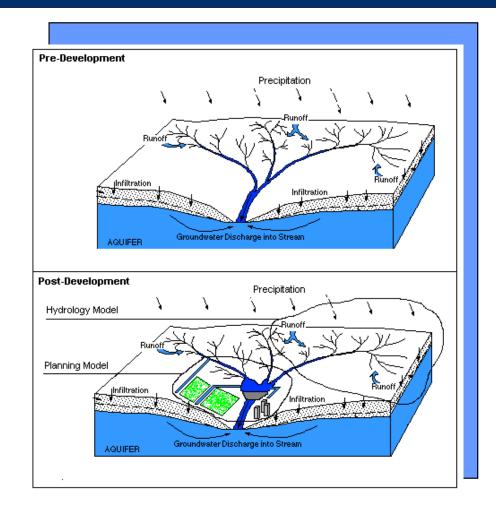
- One of more hydro-dependent countries in Africa
- Shift towards diversification
 90% dependence (2002) →
 35% (2016)

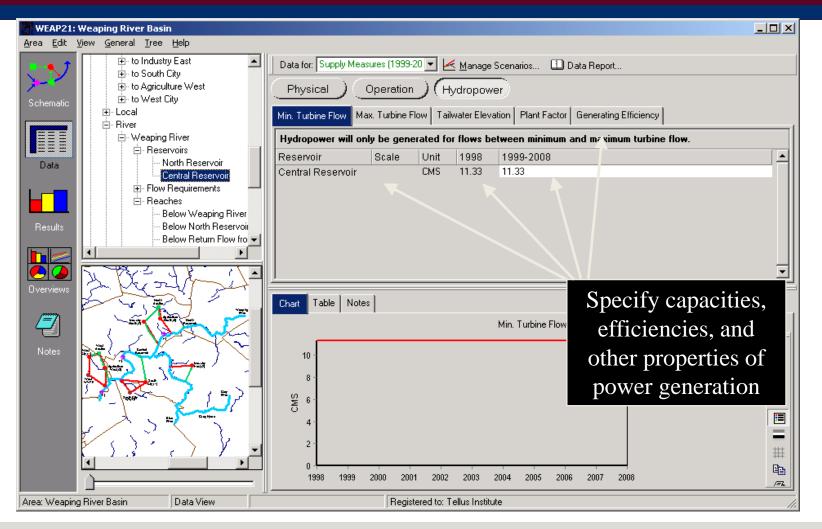
Source: Cole et al., 2012. Climate Change, Hydro Dependency and the African Dam Boom

Generation tracks rainfall


Historical power rationing/black outs due to below normal rainfall

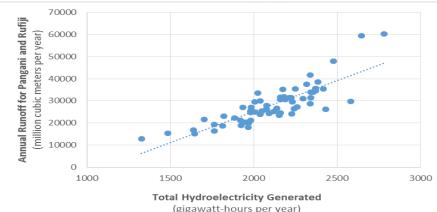
Risk and Resiliency: Hydropower modeling


- Water Evaluation and Planning (WEAP) model
 - Partnership with the
 Stockholm Environment
 Institute (SEI)
 - ICF and SEI will deliver the model and provide training
- The outputs of WEAP feed into IPM
- IPM's optimization will be used to project future hydropower builds


Hydrology and Management

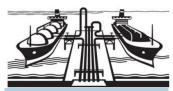
- WEAP21 advantage: seamlessly integrates watershed hydrologic processes with water resources management
 - Can be climatically driven
 - Time Steps as short as 1-day, or longer
 - (Pcp, Tmp, RH, Wind)

Hydropower



Risk and Resiliency: WEAP Hydropower modeling

- Hydropower Plants
 - Existing/potential hydro plants
- Climate Scenarios
 - [As identified by stakeholders]
- River Basin Hydrology
 - Land-use, land cover changes
 - Watershed conservation/ water quality
- Water Supply and Demand
 - Agriculture, domestic, industrial, energy, environmental
 - Increase competing water demands
- Integrated Water Resources Management
 - Operational changes
 - Capital investments storage capacity



Integrated Planning Models

Presenter: Maria Scheller

Integrated Planning Model (IPM®)

Resource Supply

- Gas Supply
- Coal Supply
- Hydro Supply
- Biomass Supply
- Renewable Potential

Existing Power Plant Variable Cost

- Fuel Transportation
- Fuel Costs
- Heat Rates
- O&M Costs

New and Existing Power Plants

- Coal
- Oil & Gas Steam
- Combustion Turbine
- Combined Cycle
- Geothermal
- Nuclear
- Hydro
- Renewables
- Cogeneration

Retrofit Technology

- SCR, SNCR, and new NO_x control options
- Wet and Dry FGD
- ACI and Fabric Filter
- Co-benefits for Hg

Transmission

- New FERC Policies
- Long-term tradeoffs with Generation
- Grid operation

Electric Demand

- Hourly Demand
- Peak & Energy Growth
- Reserve Margin
- Steam Demand

Power Plant Dispatch and Grid Operation

• Economic dispatch

Air Policy Specifications

- NO_x, SO₂, Hg and CO₂
- MACT vs. Cap and Trade
- Banking and Progressive Flow Control
- National, Regional
 and State Programs
- Renewable Portfolio
 Standards

Operation

- Maintenance
- Outages
- Must Run

Projections

Power Prices Fuel Prices Allowance Prices Asset Values Dispatch Decisions Capacity Build Decisions Emissions Compliance Costs Compliance Decisions Plant Retirement Decisions

0

•**−**>

--**T**->

<u>M</u>

·--->

A≥

·干→

----->

Ζ

IPM[®] Front-end Main Screen

About Edit Model Data Run IPM View History Security												
Supply & Demand Pollutants Retrofit/Refurbish/Repower/Retire Transmission Other												
Fuel	<u>F</u> uels	Fuel Related Links	Fu <u>e</u> l Rules	Fuel Use Case	Fuel Mix Case	Unified Fuel Steps						
Units	E <u>x</u> isting Plants	Pote <u>n</u> tial Build	Potential Unit Bounds									
	<u>U</u> nit Schedules	Pump Storage Cutoff	Pump <u>S</u> torage	Particulate Controls	Post Combus- tion Controls							
Operation	Availability	Capacity Factors	<u>A</u> rea Protection	Turndown	Rene <u>w</u> able Gen. Profiles	Retirement Schedules						
	O & M Costs	Fixed O&M Adders	Variable O&M By Fuel	Discount Rates	Fir <u>m</u> Unit Properties	Maintenance Variations						
Demand	Model <u>R</u> egions	Reserve Mar <u>q</u> ins	Capacity Dem. Curves	Energy Dem. Response								

IPM® Model Region Specifications

About Edit Model Data Run IPM View History Security												
Supply & Demand Pollutants Retrofit/Refurbish/Repower/Retire Transmission Other												
Fuel	<u>F</u> uels	Fuel Related Links	Fu <u>e</u> l Rules	Fuel Use Case	Fuel Mix Case	Unified Fuel Steps						
Units	E <u>x</u> isting Plants	Pote <u>n</u> tial Build	Potential Unit Bounds	Unit Properties	Capacity Related Links							
	Unit Pump Stora Schedules Cutoff		Pump <u>S</u> torage	Particulate Controls	Post Combus- tion Controls							
Operation	Availability	Capacity Factors	<u>A</u> rea Protection	Turndown	Rene <u>w</u> able Gen. Profiles	Retirement Schedules						
	O & M Costs	Fixed O&M Adders	Variable O&M By Fuel	Discount Rates	Fir <u>m</u> Unit Properties	Maintenance Variations						
Demand	Model <u>R</u> egions	Reserve Mar <u>q</u> ins	Capacity Dem. Curves	Energy Dem. Response								

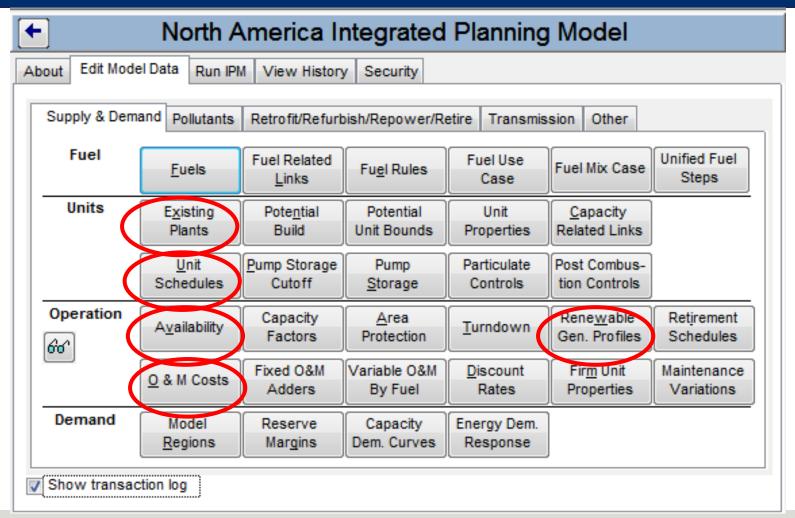
IPM® Sample Mexico Representation 9 Model Regions

Hourly Load Shape - Regional

eries Energy Growth Peak Demand Growth Houry Demand Scenarios Groupings Ratings Sets Schedule Core (001) Base Dec 99 V V V <u>Yew Month Dey 12am-1am 1am-2am 2am-3am 3am-4am 4am-5am 5am-54</u> <u>1997 1 2 5,267 5,151 5,065 5,049 5,049 5,014</u> <u>1997 1 2 5,267 5,151 5,005 5,241 5,227 5,256 5,33</u> <u>1997 1 4 5,542 5,371 5,270 5,244 5,228 5,271</u> <u>1997 1 6 5,041 5,259 5,213 5,209 5,244 5,228</u> <u>1997 1 7 5,395 5,279 5,221 5,192 5,165 5,24</u> <u>1997 1 7 5,395 5,279 5,221 5,192 5,165 5,24</u> <u>1000 400 400 400 400 400 400 400 400 400</u>	Model	Region	Canada	a-Alberta			-	÷÷ •*	×						
Vear Month Day 12an-1am 1am-2am 2am-3am 4am-5am 5am-6 1997 1 1 5,638 5,517 5,383 5,301 5,221 5,221 1997 1 2 5,267 5,151 5,065 5,049 5,141 1997 1 3 5,422 5,301 5,271 5,246 5,331 1997 1 4 5,542 5,371 5,270 5,244 5,228 5,27 1997 1 5 5,401 5,265 5,219 5,170 5,154 5,13 1997 1 7 5,395 5,213 5,209 5,264 5,35 1997 1 7 5,395 5,213 5,192 5,165 5,24 1997 1 7 5,395 5,279 5,121 5,192 5,165 5,24	erties	Energy Gr	owth	Peak Demand	Growth Ho	urly Demand	Scenarios Gr	roupings Rati	ngs Sets						
Vear Month Day 12am-1am 1am-2am 2am-3am 4am-5am 5am-6 1997 1 1 5,638 5,517 5,383 5,301 5,221 5,241 1997 1 2 5,267 5,151 5,065 5,049 5,111 1997 1 3 5,422 5,305 5,251 5,256 5,331 1997 1 4 5,542 5,371 5,270 5,154 5,131 1997 1 5 5,401 5,265 5,219 5,170 5,154 5,131 1997 1 7 5,395 5,213 5,209 5,264 5,351 1997 1 7 5,395 5,213 5,209 5,165 5,24															
Vear Month Day 12am-1am 1am-2am 2am-3am 4am-5am 5am-6 1997 1 1 5,638 5,517 5,383 5,301 5,221 5,241 1997 1 2 5,267 5,151 5,065 5,049 5,111 1997 1 3 5,422 5,305 5,251 5,256 5,331 1997 1 4 5,542 5,371 5,270 5,154 5,131 1997 1 5 5,401 5,265 5,219 5,170 5,154 5,131 1997 1 7 5,395 5,213 5,209 5,264 5,351 1997 1 7 5,395 5,213 5,209 5,165 5,24	100	Schedule Core (001) Base Dec 99													
$\frac{1997}{1997} \frac{1}{1} \frac{1}{2} \frac{5,638}{5,627} \frac{5,517}{5,151} \frac{5,383}{5,005} \frac{5,261}{5,049} \frac{5,241}{5,409} \frac{5,247}{5,11} \frac{5,151}{5,005} \frac{5,049}{5,049} \frac{5,11}{5,13} \frac{5,27}{1997} \frac{5,422}{1} \frac{5,422}{5,371} \frac{5,221}{5,271} \frac{5,226}{5,228} \frac{5,27}{2,27} \frac{5,264}{5,33} \frac{5,331}{1997} \frac{1}{1} \frac{5}{6} \frac{5,391}{5,229} \frac{5,229}{5,213} \frac{5,209}{5,209} \frac{5,264}{5,264} \frac{5,35}{5,33} \frac{5,279}{1997} \frac{5,221}{1} \frac{5,192}{5,165} \frac{5,24}{5,24}$	<u></u>														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Year	Month	Day	12am-1am	1am-2am	2am-3am	3am-4am	4am-5am	5am-6 🔺						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1997	1	1	5,638	5,517	5,383	5,301	5,261	5,24						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1997	1	2	5,267	5,151	5,065	5,049	5,049	5,11						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1997	1	3	5,422	5,305	5,251	5,257	5,256	5,33						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1997	1	4	5,542	5,371	5,270	5,244	5,228	5,27						
1997 1 7 5.395 5.279 5.221 5.192 5.165 5.24	1997	1	5	5,401	5,265	5,219	5,170	5,154	5,13						
10000 100000 100000 10000 10000 10000 10000 10000 10000 10000	1997	1			5,259	5,213	5,209	5,264	5,35						
	1997	1	7	5.395			5.192	5.165	5.24						
Hour						6000 4000 2000	733 977 1221 1465 1709 1953	2197 2441 2685 2929 3173	3417 3661 3905 4149 4143 4133		5857 6101 6345 6589 6633 6633	707 7321 7565 7809 8063 8063	8297		

+ Prope

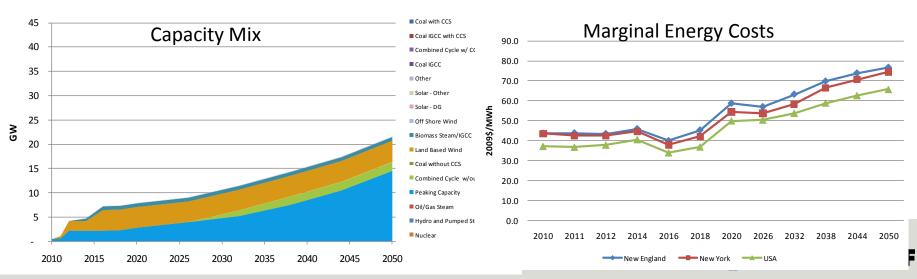
•


Peak Demand Growth Over Time

+ Mode	Region	Canada-Albert	a		•	I \$\$ ►	* 📉					
Properties	Energy G	rowth Peak De	emand Growth	Hourly Demand	Scenarios C	Froupings	Ratings Se	ets				
Schedule Yada Core10 (003) Peak Demand 04-22-10												
Demand Ch	oice	H	ighest Net Intern	al Summer/Winte	er (default)	T						
Peak Winter	r-Summer I	Rating Map				-						
Apply				Summer	Winter	Summer	Winter					
<u>G</u> rowth		Summer	Winter	Net Internal	Net Internal	Growth	Growth					
Rate	Year	Peak (MW)	Peak (MW)	Demand (MW)	Demand (MW)	Floor (%)	Floor (%)					
Show	2009	10,281	12,259	10,281	12,259	(///		T				
Growth	2010	10,526	12,513	10,526	12,513							
<u>R</u> ate	2011	10,777	12,772	10,777	12,772			1				
	2012	10,979	12,980	10,979	12,980							
	2013	11,185	13,191	11,185	13,191							
	2014	11,438	13,450	11,438	13,450							
	2015	11,739	13,758	11,739	13,758							
	2016	12,049	14,074	12,049	14,074			4				
	2017	12,320	14,348	12,320	14,348			-				
Peak Deman	d (Summer	r) in MW							NUM		/	

27

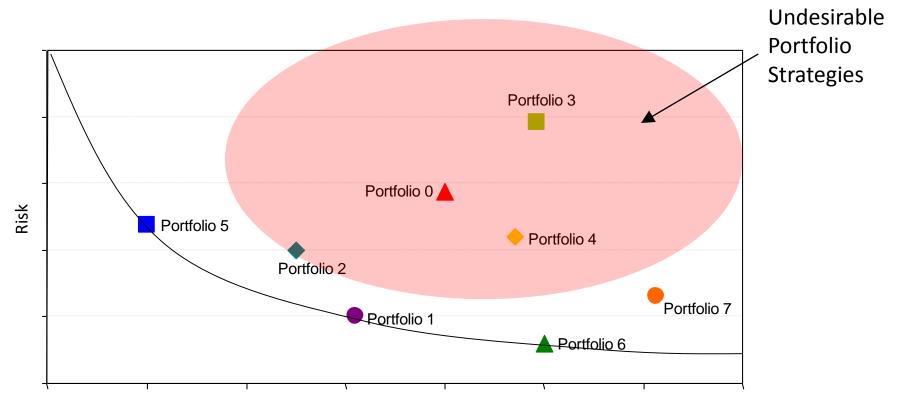
IPM[®] Unit and Operation Specification



Sample Solution Results

UnitType	2010	2011	2012	2014	2016	2018	2020	2026	2032	2038	2044	2050
Potential Build Biomass Conventional	-	-	-	5,232	10,522	-	11,252	32,637	14,177	2,336	918	547
Potential Build Biomass IGCC	-	-	-	-	-	-	-	-	-	2,467	1,229	-
Potential Build Coal IGCC_CCS	-	-	-	-	-	-	-	-	-	-	-	-
Potential Build Coal_Scrubbed	-	-	-	-	56,506	-	-	-	172,950	622,856	951,365	502,543
Potential Build Combined Cycle - Cycling	-	-	-	31,552	-	-	-	-	-	934	-	4,858
Potential Build Combined Cycle - Turndown	-	-	-	17,265	5,009	9,948	50,736	114,342	105,908	86,663	72,746	11,059
Potential Build Combustion Turbine	-	2,521	10,778	472	-	11,135	53,797	8,478	32,915	31,118	27,804	22,474
Potential Build Geothermal	-	-	-	-	8,138	3,794	-	1,946	-	-	-	3,376
Potential Build Jet Engine (LMS 100)	2,740	-	1,027	-	-	-	-	-	-	-	-	-
Potential Build Landfill	560	452	934	3,081	2,842	3,666	3,679	7,299	-	-	-	-
Potential Build Nuclear	-	-	-	-	-	-	-	-	-	-	-	28,873
Potential Build Solar PV	-	8,301	4,155	11,506	41,573	-	498	53,650	18,595	-	2,413	-
Potential Build Solar TH	-	-	-	-	27,264	-	-	121	95	-	1,552	6,056
Potential Build Wind	1,659	13,974	27,272	2,446	56,020	2,384	14,263	26,315	-	-	32,324	26,457
Potential Combined Cycle with CCS	-	-	-	-	-	-	-	-	-	-	-	-
Total	4,960	25,248	44,166	71,553	207,873	30,926	134,225	244,788	344,641	746,374	1,090,349	606,243

Annual Investment Expense



Utilizing Evaluation Criteria

Presenter: Maria Scheller

Portfolios With High Risk and Cost Are Less Desirable

Expected Value of Levelized Cost

Scorecard Approach

Cri	teria		Cost			Ris	sk		Er	nvironment	al
Portfolio		2012-2030 Cost NPV (\$Mil)	2012-2030 Levelized Cost (2011 \$/MWh)	Cost Rating Score	95 th Percentile Costs (\$Mil)	Reserve Margins 2025 (%)	ns Quantum Score		CO ₂ Changes from 2012 to 2025 (%)	Renewable Generation As % of Load (%)	Environmental Stewardship Score
Status Quo								•			0
Portfolio 1				0)			9
Portfolio 2				0)			0
Portfolio 3											
Portfolio 4											
Portfolio 5								0			9
Portfolio 6				0							•
Portfolio 7				0							
Portfolio 8								0			•
Portfolio 9											

Favorable

O Neutral

Unfavorable

