

Energy Systems Fundamentals: Energy Efficiency and Utility Demand-Side Management

USAID – The Fundamentals of Energy Systems for Program Managers June 9-11, 2014 – Washington, D.C.

Bill Prindle Vice President, ICF

Overview

- 1. The Big Picture: Framing energy efficiency (EE) policies and programs
 - Definition of energy efficiency
 - The policy and business cases for energy efficiency
 - Energy efficiency policy frameworks
- 2. Narrowing the Picture: Implementing EE in utility demand-side management (DSM)
 - DSM analysis and program planning
 - Case study: Tanzania
 - DSM program design and implementation
 - Program evaluation

This session focuses on EE in utility customer end-uses, leaving aside power generation, transport, agricultural, mining sectors.

1. Big Picture: Framing EE Policies and Programs

Definition of Energy Efficiency

Provides equal or better end-use energy services with less energy supply commodity.

QUESTION: What are some examples?

- Replacing inefficient end-use technologies with more-efficient models
- Retrofitting whole buildings with insulation, better windows, better equipment to improve efficiency

 Operating buildings and industrial plants more efficiently via advanced use of information and control systems

Policy and Business Cases for EE

- 1. Lowest-cost climate mitigation resource
- 2. Prerequisite for success in any clean energy strategy
- 3. Lowest-cost power system resource
- Practical way for utilities to balance capacity and energy resources with demand

Lowest-Cost Climate Mitigation

EE technologies cost less than conventional energy

Energy Efficiency features in Indonesia's new convention center

https://www.youtube.com/watch?v=JdjlQjd2j4w

The Key to Clean Energy Success

The Least-Cost Power System Resource

Efficiency is cheaper than conventional power generation technologies

The Business Case for Utilities

EE and other DSM programs support a variety of utility goals:

- Help customers manage utility bills
- Improve customer satisfaction
- Counter opposition to tariff/price increases
- Free up system capacity to meet current and future demand
- Reduce technical and other system losses

Bottom line: Improve business performance

Efficiency Policy Frameworks

Energy Efficiency Governance

California, U.S. Example: EE Governance Framework Saved 25% in 25 years

¹²Source: California Energy Commission

U.S. Policy Example: Refrigerators

- 1. Government develops test procedure and laboratory accreditation for covered products (1980s)
- 2. R&D competition for advanced efficient design (early 1990s)
- 3. Voluntary labeling promotes efficient products (1990s)
- 4. Utility programs provide incentives to drive market share growth (1990s)
- 5. Government sets mandatory standard based on efficient design (2001 effective date)
- 6. Repeat process! (new standard effective 2014)

A complete market transformation in <15 years

utility role was a key bridge from policy to market

Policy Success: Fridge Usage Falls 75%

Sources: Association of Home Appliance Manufacturers (AHAM) for energy consumption and volume; U.S. Census Bureau for price

Notes: a. Data includes standard-size and compact refrigerators.

- b. Energy consumption and volume reflect the DOE test procedure published in 2010.
- c. Volume is adjusted volume, which is equal to the fresh food volume + 1.76 * freezer volume.

d. Prices represent the manufacturer selling price (e.g. excluding retailer markups) and reflect products manufactured in the U.S.

Nigeria Policy Example: (Current UNDP Project)

Saving energy through end-use appliances in the residential and public sectors

- Setting up minimum energy performance standards (MEPS) for appliances
- Introducing DSM programs
- Sample of accomplishments:
 - Draft National Energy Efficiency Policy
 - Draft EE Standard for CFLs
 - Training
 - Established Testing Centre for Lighting

Utility Policy Frameworks

- 1. Integrated Resource and Resiliency Planning (IRRP)
- Energy Efficiency Obligations (EEOs) or Resource Standards (EERS)
- 3. Utility regulation reform to align policy goals with utility business models

IRRP Example: Malawi

- In 2007, with only 7% of Malawians connected to the grid, IRRP undertaken by MCC to support improved energy access and reliability
- IRRP (conducted by ICF) projected 20-year demand and identified resource options
- IRRP results helped MCC justify funding for utility grid improvements

EEOs around the World

Twenty-four states have enacted energy savings goals, or Energy Efficiency Resource Standards (EERS), through legislation and several states have a pending EERS

EEOs around the World

- **Europe:** Several Member States or Regions
- **U.S.**: 24 States ("EE Resource Standards" or EERS)
- Australia: 3 largest States
- **China:** spending 3-4% of total electric revenues
- Brazil: 1.5% of electricity revenues
- Korea: over 3% of power revenues support DSM programs
- Canada: Ontario

Utility Regulation Reform: Aligning Policies with Utility Interests

- 1. Cost recovery—timely and practical mechanisms for recovering program costs
- 2. Revenue stability-reforming ratemaking so that utilities don't lose money when sales fall
- 3. Utility shareholder earnings enabling utility shareholders as well as customers to benefit

Revenue Stability: Decoupling

Source: Regulatory Assistance Project

2. Narrowing the Picture: EE in a Utility DSM Framework

DSM: Two Main Flavors

Energy efficiency (EE)

- Permanent reduction in consumption across the load curve
- Provides same or better energy service with fewer kWh
- Demand response (DR)
 - Temporary reduction in consumption at times of system peak
 - May be associated with curtailment of service

EE or DR require consistent analysis and planning

The DSM Planning Process

- Research and analyze end uses by customer class, technology and load shape
- 2. Identify EE and DR measures—match most common end uses to best technologies
- 3. Quantify measure savings and costs
- 4. Bundle measures into programs by customer class and submarket
- 5. Project market uptake for DSM programs
- 6. Project DSM programs total energy and capacity savings
- Conduct cost-effectiveness analysis

Planning Case Study: Tanzania

TANESCO: the electric utility

- 800+ MW peak load
- Frequent forced load shedding
- Tariffs do not recover full cost of service
- Technical and theft losses were >20%
- USAID funded DSM potential analysis in 2013

Develop Customer End Use Data

Tariff Class	Customers in Tariff Class	% Total Cust.	Total Sales (GWh)	% Sales	Average Annual Sales per Customer (kWh)
D1—Domestic Low Usage	613,618	47%	515	10%	839
T1—General Usage	699,287	53%	2,203	43%	3,150
T2—Low Voltage Supply	2,483	0.2%	634	12%	255,336
T3—High Voltage Supply	461	<0.1%	1,804	35%	3,913,232
Total	1,315,849		5,156		

T1--Residential

D1

T1--Commercial

Retail store

Medium Office

Secondary School

-

FROM THE AMERICAN PEOPLE

Cement Plant

FROM THE AMERICAN PEOPLE

Develop DSM Measures

Residential

Tariff Class	End Use	Measure Type		
D1	Lighting	CFL		
	Refrigeration	Efficient Refrigerator		
T1	Cooling	Efficient AC		
	Envelope	Air Sealing		
	Lighting	CFL		
	Refrigeration	Efficient Refrigerator		

Industrial

Measure Category	Measure Type
	Compressed Air Upgrades
	Custom Project
	Lighting Upgrades
Energy Efficiency	Motor Upgrades
	Process Cooling Upgrades
	Process Heating Upgrades
	Variable Speed Drives
Demand Response	Time-of-Use Rate

Commercial

Measure Category	End Use	Measure Type		
Energy Efficiency	Cooling	Efficient Split AC		
	Envelope	Air Sealing		
		CFL		
		LED Reflector Lamps		
		Lighting Occupancy		
	Lighting	Sensor		
		Linear LED Lamps		
		T8/T5 Linear		
		Florescent		
		Efficient Refrigerated		
	Refrigeration	Case Display		
		Efficient Refrigerator		
Demand Response	Cooling	AC Direct Load Control		

Project DR Potential

Example: DR can trim about 15% of Tanesco's peak load

Project Efficiency Potential (Capacity/MW)

Project Efficiency Potential (Energy/GWh)

Project Program Costs (\$ Million)

Conduct Cost-Effectiveness Analysis

- Quantify benefits and costs of each measure from potential estimates
- 2. Apply a consistent set of economic tests
- Determine which measures/bundles/programs pass economic tests
- Assess individual measures
 vs. bundles and whole
 programs

Cost-effectiveness Results

Sector	Program Name	Utility Cost Test (UCT) B/C Ratio	UCT Net Benefits (\$ Mil.)	Levelized Cost per kWh (\$)	Levelized Cost per kW (\$)
Residential	Refrigerator Recycling & Replacement	1.0	\$15.4	\$0.06	\$978
Residential	Residential Lighting	4.8	\$37.7	\$0.04	\$94
Commercial	Energy Solutions for Commercial	1.9	\$4.7	\$0.07	\$140
Commercial	Commercial Refrigerated Vending	3.3	\$1.4	\$0.03	\$89
Commercial	Commercial Direct Load Control	1.0	\$8.2	N/A	\$108
Industrial	Energy Solutions for Industrial	2.6	\$8.5	\$0.04	\$123
Industrial	Time-of-Use Tariff	19.1	\$18.9	N/A	\$6
	Total Portfolio	2.4	\$94.8	\$0.06	\$98

DSM Program Design/Implementation

- Break out program design by sectors—industrial, commercial, residential, etc.
- 2. Develop key design features—technology, market, incentives, etc.
- Understand and work with customers and markets—market research, outreach and engagement
- 4. Develop marketing and implementation plans, systems, and documents

Use "Big Data" to Focus Programs

Use available customer data to identify best prospects

A Map of Program Incentives

National Action Plan for Energy Efficiency (2010). *Customer Incentives for Energy Efficiency Through Program Offerings*. Prepared by William Prindle, ICF International, Inc. <www.epa.gov/eeactionplan>

Market Programs by Sector

Program evaluation

- 1. Evaluation should be designed into the program define goals and metrics, collect and report data
- 2. Evaluation should be based on: clear program logic, metrics, and measurement/verification methods
- 3. Program design should support evaluation by: designing management systems and procedures to collect needed data

