

Partnership for Growth – DSM Support in Tanzania

A project of USAID's Energy Efficiency for Clean Development Program (EECDP)

Haider Khan, ICF

July 27, 2013

Overview: Activities to Date

- 1. Document Review
- 2. Electric Meter Data Analysis
- 3. Develop Customer and System Load Profiles
- 4. Conduct Energy Analyses of DSM Measures
- 5. Quantify System wide DSM Potential

Activity 1. Document Review

POWER SYSTEM MASTER PLAN

- Avoided costs
- EWURA Cost of Service Study
 - Total consumption and number of customers
- Hatch Report
 - End-use energy disaggregation
 - Measures and costs
- Journal and Conference Publications
 - Typical measures in the region and costs of the measures

Activity 2. Electric Meter Data Analysis

- Disaggregate electricity consumption into end-uses
 - Analyze data to identify energy efficiency and load management potential
- Determine baseline energy use

Activity 2. End-Use Disaggregation - Stand-Alone Retail

Activity 2. End-Use Disaggregation - Medium Office

Activity 2. End-Use Disaggregation -Strip Mall

Activity 2. End-Use Disaggregation - Primary School

ROM THE AMERICAN PEOPL

Activity 2. End-Use Disaggregation -Secondary School

Activity 2. End-Use Disaggregation – Cement Factory

Activity 2. Baseline Energy Use - Challenges

- The backend server is not flexible and the database schema is not known internally to TANESCO
- Annual load shape electricity or demand data is not available for download in spreadsheet format.
- Customer classification is absent (see Appendix slides 2.1)
- Cannot use the end-use disaggregation as the classification is missing for the customers

Activity 3. Develop Customer and System Load Profiles

- Analyze trends across sample of customers
 - Build local capacity
- Create system load profile for T1, T2, & T3 customers

Activity 3. Analyze Trends Across Sample of Customers

- ASHRAE Level 1 (walk through)
 - Tanzania Cigarette Company
 - Iron and Steel
 - Metal Products
- Site Visit
 - Quality Group Limited- shopping mall

Activity 3. Analyze Trends Across Sample of Customers - Tanzania Cigarette Company

- Facility Characteristics
 - 1.6MW Electric Boilers
 - 184kW Chiller
 - 18.5+7.5kW Air handling units
 - Cooling tower
 - Electric fork lift charging station
 - Ductless Split air conditioner
 - Lighting
 - Motors

- Energy Efficiency Features:
 - Variable speed drives on compressors
 - High efficiency instantaneous steam boilers
 - Staggering of boilers
 - Staggering of air compressors
 - High efficiency lighting -T-5 in office space and Metal Halide (currently being installed)
 - Variable Refrigerant Volume (VRV) ductless split AC (Currently out for bid)
 - Double pane windows in most areas
 - Cool roof
 - High efficiency motors (motors are rewound a maximum of 2 times before being replaced)
 - Overhangs on windows

Activity 3. Analyze Trends Across Sample of Customers - Tanzania Cigarette Company

- Recommendations:
 - Battery charging should be done at night during off-peak hours
 - Air sealing for conditioned space
 - Variable speed drive on the air handler
 - Variable speed chiller
 - Variable speed drive on cooling tower
 - Complete window upgrade to double pane

Activity 3. Analyze Trends Across Sample of Customers - Iron and Steel

- Facility Characteristics:
 - Large motors
 - Multiple motors for conveyer belt- including one 800 HP motor
 - motors for air compressor,
 - motors for rolling machines,
 - motors for cooling tower fan
 - Induction furnace

Activity 3. Analyze Trends Across Sample of Customers - Iron and Steel

Recommendations

- Shift coreless induction furnace operations to nights and mornings i.e. off-peak.
 - Use of channel induction furnaces
 - Or, use energy management systems
- Upgrade motors to premium efficiency motors.
- Upgrade cooling tower controls to multispeed or two speed controls.
- Air-seal office area building envelope to reduce cooling load.
- Install metal halide lighting instead of sodium lighting
- Use high efficiency lighting or day light in the office area.

Activity 3. Analyze Trends Across Sample of Customers - Metal Products

- Facility Characteristics:
 - 50kW Electric tunnel type paint drying oven (kiln)
 - Seam welding machine
 - Motors for rollers
 - Two 10kW presses

Activity 3. Analyze Trends Across Sample of Customers - Metal Products

- Recommendations:
 - Upgrade motors
 - Insulate walls of the oven
 - Operate oven and seam welder at off-peak hours

Activity 3. Analyze Trends Across Sample of Customers - Quality Group Limited

- Facility Characteristics:
 - Air Conditioners
 - Lighting

Activity 3. Analyze Trends Across Sample of Customers - Quality Group Limited

- Recommendations:
 - Close vents that are not needed for air conditioning
 - Use efficient lighting
 - Use air doors to reduce infiltration
 - Consider creating air-barrier in the atrium

Î	\sim	M	X	X	Μ
L8 Feet High					

Activity 3. Create System Load Profiles

Total Annual Consumption by TANESCO Region from AMI Data

Activity 4. Conduct Energy Analyses of DSM Measures

- Customer Classification: Construct prototype facilities
- Create a list of energy efficiency measures
- Conduct energy savings calculations for the selected energy efficiency measures

Activity 4. Customer Classification

- Ideal Approach
 - Ideally, we would start with the common subsector building types for each of the residential, commercial and industrial sectors
- Challenges
 - No classification for clients
 - No annual load shape data
- Alternative approach
 - Classified representative customers based on electricity consumption rate class instead of subsector building types
 - Disaggregate electricity use based on consumption level

Activity 4. Customer Classification – AMI Analysis by Rate Class- T1

- To estimate the number of residential vs. commercial customers
 - Create consumption bins:
 - Average Consumer Under 33rd Percentile
 - Average Consumer Between 33rd and 66th Percentile
 - Average Consumer between 66th and 95th Percentile
 - Average Consumer in top 5th percentile
 - Removed outliers for examples electricity use of less than 100kWh per year
 - Categorize based on consumption bin as residential if they were fall under bins 1 & half of 2 and the rest as commercial. This is to reconcile with the report created by Hatch.

Activity 4. Customer Classification – AMI Analysis by Rate Class- T2

- To estimate the number of industrial vs. commercial customers
 - Create consumption bins:
 - Average Consumer Under 33rd Percentile
 - Average Consumer Between 33rd and 66th Percentile
 - Average Consumer between 66th and 95th Percentile
 - Average Consumer in top 5th percentile
 - Removed outliers for examples electricity use of less than 500kWh per year
 - Categorize based on consumption bin as commercial if they were fall under bins 1 &
 2 and the rest as industrial

Activity 4. Customer Classification – AMI Analysis by Rate Class- T3

All industrial

Activity 4. Customer Classification – AMI Analysis by Rate Class- D1

All residential

Activity 4. Customer Classification – Aggregate consumption and number of Customers

Customer class	No. of customers	Units Sold GWH	Source
D-1	453,409	2467	Calculated from difference of EWURA from T1, T2, T3
T-1	232,119	1,171	Representative Meter Data
T-2	1,512	411	Meter Data
T-3	440	2,573	Meter Data
Total		6,621	EWURA cost of service study

Activity 4. Customer Classification – Energy End-Use Disaggregation

Hatch report for D1, T1 residential, and T1 commercial; GEA, 2012: Global Energy Assessment - Toward a Sustainable Future, Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria.

Activity 4. Create A List Of Energy Efficiency Measures (Appendix)

- Residential measures categories : 5
- Residential measures: 20
- Industrial measures categories: 40
- Industrial measures: 408
- Commercial measures categories: 24
- Commercial measures: 235
- Sources:
 - Hatch report
 - ICF Industrial Measure Database
 - ICF Commercial Measure Database
 - ICF Trip to Tanzania

Activity 4. Conduct Energy Savings Calculations For The Selected Energy Efficiency Measures

- A combination of engineering calculations and building energy modeling is used to model the various energy efficiency measures.
 - An example of simple engineering calculation: demand savings from going to CFL from incandescent bulbs is 60watts 15watts= 45watts. Assuming the light bulb operates at 6 hours per day, the energy savings will be 99 kWh per year

Activity 5. Quantify System-wide DSM Potential

- Develop technical, economic, and market potential for demand and energy savings
- Estimate avoided utility costs
- Estimate current technology penetration and develop participation estimates
- Project energy savings over planning period through 2025

Activity 5. Develop Demand and Energy Savings Potential - Definition

- Technical Potential
 - is the amount of savings that would result from replacing all existing equipment that uses electricity with the most technically-efficient commercially-available equipment.
- Economic Potential
 - is the amount of cost-effective program potential that could be achieved absent program budget constraints.
- Achievable Potential
 - is the amount of cost-effective program potential that could be achieved given program barriers and program delivery effectiveness.

Activity 5. Develop Demand and Energy Savings Potential - Bottom-up analysis Approach

- Energy consumption disaggregated by various end-uses
- The disaggregated energy use was used as a constraint to ensure the product of energy consumption and number of measure units do not exceed the total consumptions.
- We also confirmed that the technical potential does not exceed the baseline energy
- Example: the number of incandescent bulbs * the energy consumption of the bulbs does not exceed the end use distribution of the lighting

Activity 5. Develop Demand and Energy Savings Potential - Bottom-up analysis Approach

- We estimate the savings potential for a measure on a per unit basis. For example demand savings from going to CFL from incandescent bulbs is 60watts – 15watts= 45watts. Assuming the light bulb operates at 6 hours per day, the energy savings will be 99 kWh
- Estimate the number of units affected. Divide appropriate end-use aggregated energy consumption for TANESCO by baseline energy consumption. For example, T1 end-use for incandescent light bulbs is 65 GWh. At 60 watts for each bulb this equates to around 495,000 light bulbs.
- Multiply number of units affected by energy and demand savings. For example, there would be 49 GWh and 22MW saved

Activity 5. Develop Demand and Energy Savings Potential - Measure Cost

- Cost of technology
 - Hatch report
 - African offices of Johnson Control
 - Conversion factor between North America and Tanzania for missing prices
 - USD to TZS
 - Shipping costs
 - Import Tariff
 - Missing information
- Cost of labor
 - World Bank report

Activity 5. Estimate Avoided Utility Costs

Avoided utility cost is the financial cost of additional infrastructure for a public utility to provide one more unit of power to an end-user.

		Avoided costs without
Planning Year	Units	inflation
		\$2,710 – nominal or total
2012-2035	per kW	cost per unit of capacity.
2012-2018	per kWh	\$0.06
2019-2035	per kWh	\$0.09

Source: Power System Master Plan

Activity 5. Estimate Current Technology Penetration And Develop Participation Estimates

- Hatch report
- Work with research group or other departments at TANESCO
- Past experience of DSM studies in the region

Activity 5. Project energy savings over planning period through 2025 - Demand Response and TOU Rate Structure

- Demand savings potential from implementation of Time Of Use (TOU) rate structure is 244MW
- Technical potential from Demand Response is 126MW and the economic potential is 26MW. The programs could include:
 - Direct load control—utility-controlled switches on specific devices, e.g. water heaters, AC units
 - Curtailment incentives—customer curtails load on utility request, is paid for measured kW reduced during that period
 - Demand Response tariffs

	TOU			Demand Response	
	T1	T2	Т3	Т3	Total Demand Savings (MW)
Maximum Technical Potential	8	7	229	126	370
Economic Potential	8	7	229	26	270

Activity 5. Project energy savings over planning period through 2025 – Maximum Technical Potential

Maximum Technical Savings Potential-Demand (MW)

Measure	D1 Residential	T1 Residential	T1 Commercial	T2 Commercial	T3 Industrial	Total Demand Savings
Lighting Upgrade	12.75	1.11	15.25	0.45	-	29.56
Lighting Control	-	-	1.46	0.04	-	1.50
Split AC System Upgrade	-	-	13.35	0.65	2.55	16.54
Cooling Control	-	-	1.40	0.07	0.41	1.87
Air Sealing	-	-	3.07	0.15	0.89	4.10
Industrial Preventative						
Maintenance Measures	-	-	-	-	-	-
Motor System Upgrade (None-						
Air Compressor)	-	-	-	-	17.66	17.66
				Total Demand	Savings (MW)	71.24

Maximum Technical Savings Potential-Energy (GWh)

Measure	D1 Residential	T1 Residential	T1 Commercial	T2 Commercial	T3 Industrial	Total Energy Savings
Lighting Upgrade	9.31	0.81	11.14	0.33	309.80	331.38
Lighting Control	-	-	1.07	0.03	24.78	25.88
Split AC System Upgrade	-	-	22.83	1.10	6.60	30.53
Cooling Control	-	-	7.99	0.39	2.31	10.69
Air Sealing	-	-	17.49	0.85	5.06	23.39
Industrial Preventative						
Maintenance Measures	-	-	-	-	262.78	262.78
Motor System Upgrade (None-						
Air Compressor)	-	-	-	-	122.44	122.44
				Total Energy S	avings (GWh)	807.09

Challenges and Recommendations for Future Studies

- Commercial and Residential building characterization
- Industrial sub-sector characterization
- Building and sub-sector baseline information about consumption and other energy features
- Market research about efficient available technologies including energy features and price
- End-use survey for residential, commercial, and industrial sub-sectors
- Appliance standards establishing minimum efficiency baselines, test procedures, and labeling.

Activity 6. Recommend DSM Tariff and Program Options

- Identify most promising programs and tariffs ranked by savings potential and cost-effectiveness.
- Work with TANESCO to gather program design consideration such as:
 - Marketing
 - Customer outreach channels
 - Administration process and cost
 - Monitoring and evaluation methods

A1 - Industrial Customer Classification

- Ammonia & Methanol
- Cement
- Chemical
- Fabricated Metal
- Food & Beverage
- Iron & Steel
- Jute
- Manufacturing
- Mining
- Non-Metallic Minerals
- Oil & Gas

- Petroleum & Refining
- Plastics & Rubber
- Potash
- Power Generation
- Primary Metals
- Pulp & Paper
- Sawmills & Wood
- Textile
- Transportation
- Water Treatment

A2 - Commercial Customer Classification

- Large Office
- Medium Office
- Small Office
- Warehouse
- Stand-alone Retail
- Strip Mall
- Primary School
- Secondary School
- Supermarket
- Quick Service Restaurant
- Full Service Restaurant

- Hospital
- Outpatient Health Care
- Small Hotel
- Large Hotel
- Midrise Apartment

A3 - Energy Efficiency Measures- Residential

- Lighting Upgrade
- Refrigerator upgrade
- Efficient Behavior
- Reduce Air Leakage

A4 - Energy Efficiency Measures-Commercial

- Reduce Air Leakage
- Lighting Occupancy Sensor
- Air Conditioning Occupancy Sensor
- Lighting Upgrade
- Air Conditioning Upgrade
- Multi-VRF Air Conditioning System
- Window Films to Reduce Solar Gain
- Ceiling Insulation
- Efficient Behavior
- Efficient Water Heater

- Efficient Refrigerator
- Efficient Freezer
- Cold Drink Vending Machine
- Water Chiller Upgrade
- Beverage Machine Upgrade
- Efficient Ice Machine

A5 - Energy Efficiency Measures-Industrial

- Direct Load Control
- Interruptible Tariff
- Time of Use Tariff
- Power Factor Correction Program
- Motor Upgrade
- Variable Speed Drive
- Lighting Upgrade
- Lighting Occupancy Sensors
- Multi-Variable Refrigerant Flow System
- Lighting controls: occupancy sensors
- Compressed Air Storage
- Water Chiller Upgrade
- Air Compressor Upgrade
- Eliminate compressor air leaks
- Steam Trap Repair
- Doors, Covers and Curtains
- Improve insulation of refrigeration system
- Pump Impeller Trimming
- Energy Management Systems
- Reduce Air Leakage

- Air Conditioning Occupancy Sensor
- Ceiling Insulation
- Replace compressed air use with mechanical or electrical
- Efficient Lighting Design
- Refrigerator upgrade
- Minimize operating air pressure
- Preventative Pump Maintenance?
- Preventative Packaged HVAC Maintenance?
- Preventative Compressor Maintenance?
- Preventative Kiln Maintenance?
- Preventative Boiler Maintenance?
- Preventative refrigeration/cooling system maintenance?

A6. DR Programs Applicable to TANESCO?

- Smart meters installed on 16000 of the largest customers
- Loading factor is low, that is peak demand is much greater than the average demand
- Generation is Hydro-Power dominant

A7. Need for DR programs?

A8. impact of demand response programs

Time (Hour)

A9. Impact of DR Program

