

Additive Manufacturing Briefings (AMB)

Opening Address

Dr. Vivek Saxena

Vice President, ICF International Leader, Operations & Supply Chain Practice

April 7, 2015, Palos Verdes

INTERNATIONAL

Agenda

Introductions

An Additive Manufacturing Primer

AMB Focus is Aerospace Production

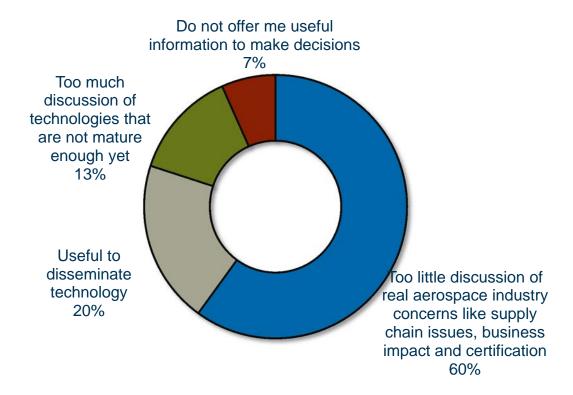
AMB Preview

ICF is one of the world's largest and most experienced aviation and aerospace consulting firms

- 52 years in business (founded 1963)
- 100+ professional staff
 - Dedicated exclusively to aviation and aerospace
 - Blend of consulting professionals and experienced aviation executives
- Specialized, focused expertise and proprietary knowledge
- Broad functional capabilities
- More than 10,000 private sector and public sector assignments
- Backed by parent company ICF International (Over \$1B 2014 revenue)
- Global presence offices around the world

New York • Boston • Ann Arbor • London • Singapore • Beijing • Hong Kong

ICF's thought leadership on AM is recognized



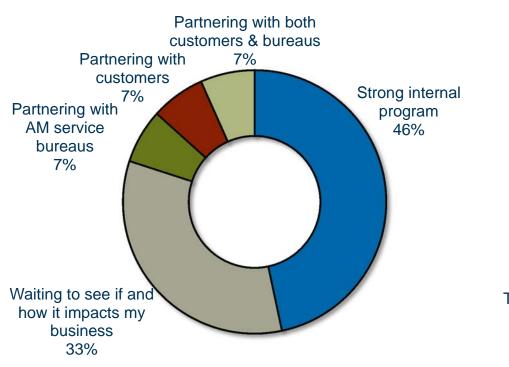
In our AM survey, 80% participants want a conference like AMB

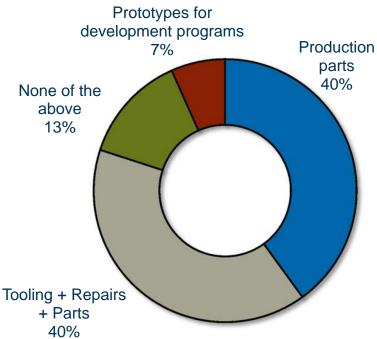
Survey Participants

Services 13% Material Supplier 37% Tier 1 With Design Authority 19%

View on AM conferences

Tier 1 - Tier 2

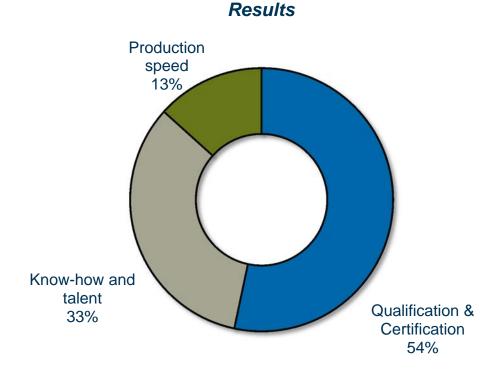

Supplier


19%

Almost half are pursuing AM capabilities in-house and 80% are working on production parts

How are you pursuing AM?

What is the focus of your AM?



Certification and lack of skilled talent are considered a major barrier to AM adoption

Question: What is the biggest challenge for your business in adopting AM?

Possible Answers

- a) Affordability (Capex and NRE)
- b) Know-how and talent
- c) Unit cost with AM
- d) Production speed
- e) Qualification & Certification

INTERNATIONAL

Agenda

Introductions

An Additive Manufacturing Primer

AMB Focus is Aerospace Production

AMB Preview

Additive manufacturing can provide competitive advantage

Additive Manufacturing

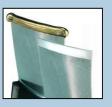
- 1. Reduced Lead Times
- 2. Reduced Weight
- 3. Reduced Cost

Whole Parts

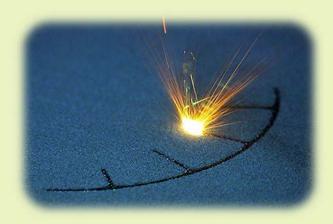
Assemblies and complex parts are prime candidates

Tooling / Fixtures

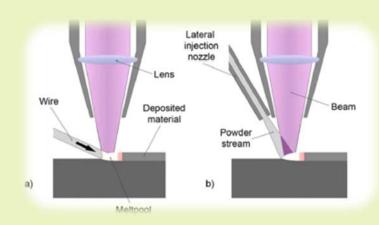
AM is well suited to low volume, high lead time items such as tooling


Add Features

Protrusions, bosses, and flanges could be added to simplified forged rings


Repair

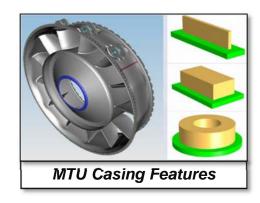
Blade tips and other traditional additive repairs


Two main types of processes are used for aerospace additive manufacturing

Powder Bed Process

- Examples: SLS, EBM, LM
- Size limited by processing chamber
- Good surface finish and resolution

Direct Energy Deposition

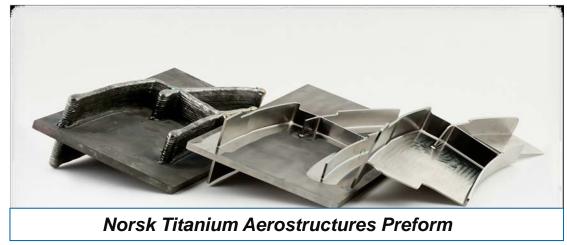

- Examples: EBWM, PBWM, LENS
- Material deposited during processing
- Relatively high material deposition rates
- May require more post-processing

Source: ICF SH&E secondary research, interviews

While AM technology focus has been on small and complex parts (e.g. aero-engine components)


P&W GTF Compressor Vanes

Source: ICF SH&E analysis, interviews and published sources


nozzles

Current technologies also allow the additive manufacture

of large parts

Target applications are complex-geometry high BTF parts

Source: ICF SH&E analysis, GE Aviation, Avio, Rolls Royce and NTi

Applications with less stringent certification or safety requirements such as spacecraft and UAVs heavily use AM

Examples of AM Spacecraft and Experimental Aircraft Parts

Spacecraft Components

 Chamber for production SpaceX rocket engine made by AM

UAV Components

 Using AM for many components allowed SelectTech to shorten test & redesign cycle

Experimental Aircraft

Evektor Experimental Aircraft

 Many military and experimental aircraft OEMs use AM to rapidly iterate designs and reduce lead times for low-volume parts

Space & experimental vehicles have been prime candidates for near-term AM adoption

Source: SpaceX, Stratasys, ICF SH&E research

Additive manufacturing is just beginning to improve aftermarket support to operators

RAF Tornado

- BAE producing protective covers for cockpit radios and guards for power take-off shafts to sustain RAF Tornados via AM
- Parts first flew in December 2013
- These AM parts could cut RAF's maintenance costs by \$1.9M over four years

Air Transat A310

- In February 2014 the first AM component – a small plastic crew seat panel – flew on an Airbus customer jetliner
- The aircraft was an A310 operators by Air Transat
- Like most aircraft OEMs, Airbus is working towards "on demand" spare parts

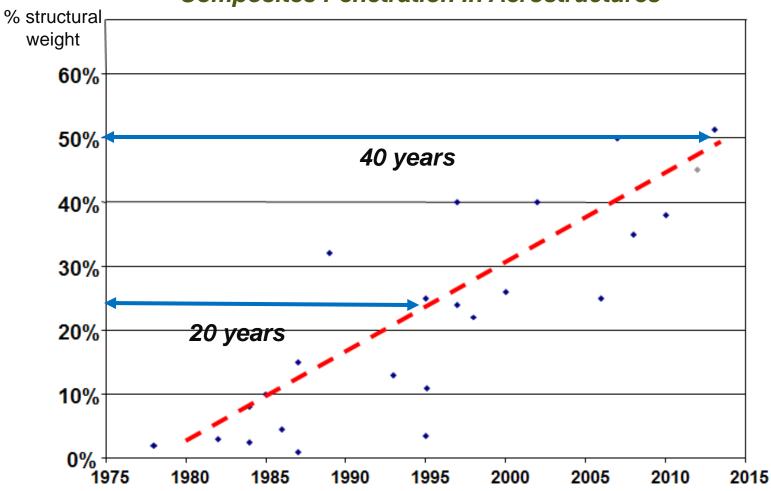
Sources: Daily Mail, Airbus

A class of repairs have historically been additive

Repair of Turbine Components Using Direct Metal Deposition (DMD)

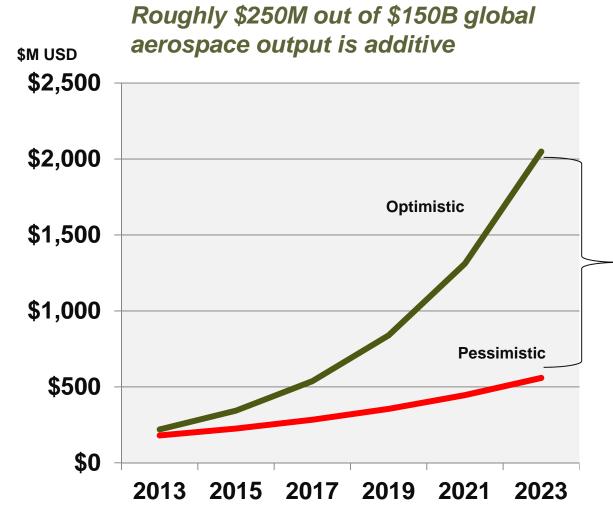
Turbine blade squealer tip is built up using DMD

As deposited DMD turbine blade tip


Rebuilt turbine blade tip

DMD includes a patented closed loop feedback control of the deposition process

Source: DM3D, MT Additive


Disruptive technologies in the long-cycle aerospace industry take time to develop as evidenced by composites

Composites Penetration In Aerostructures

Sources: ICF International analysis, Boeing, Airbus, secondary research

Additive manufacturing aerospace market projections vary wildly

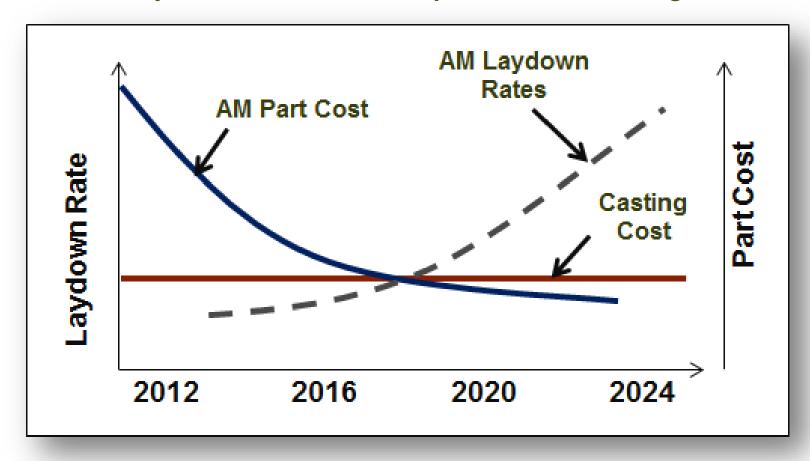
- Uncertainties reflect the embryonic stage of AM development
- Just a few high-volume parts in production have the potential to greatly increase total market size
- Early adoption will be in applications with lower certification barriers
- Adoption of composites offers a good learning experience

Source: ICF International analysis, interviews, Wohler's, Credit Suisse Market size includes machine sales and parts production

INTERNATIONAL

Agenda

Introductions


An Additive Manufacturing Primer

AMB Focus is Aerospace Production

AMB Preview

Ultimately, AM parts will have to buy their way on to the aircraft

Projected AM Cost For Complex Titanium Casting

Source: ICF SH&E analysis, interviews,

The AM value chain is evolving and the traditional supply base may not be ready for the impact

The Additive Manufacturing Value Chain

Software Enablers

Geomagic

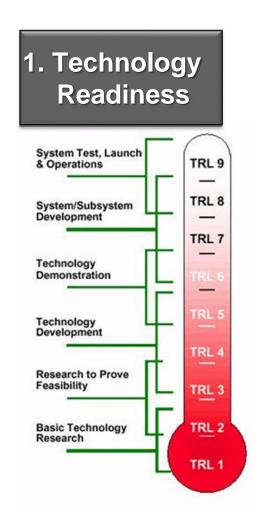
Netfab

Materialise

Hardware

Example Companies

- ATI
- Carpenter Technology
- Special Metals (PCC)
- Perryman
- RTI


- Sciaky
- 3D Systems
- Arcam
- EOS
- ExOne
- Renishaw
- Stratasys
- SLM

- Altair
- Autodesk
- Dassault
- Witnin labs

- Airbus
 Reging
 - Boeing
 - GE
 - Pratt & Whitney
 - MTU
 - GKN
 - Service bureaus like Sciaky

Source: Roland Berger, ICF International research

Quality assurance and certification

- 2. Process
 Repeatability
- Standardization / specs
- Material characterization
- Machine variables
- Resolution, accuracy
- Process control

Source: ICF SH&E analysis, interviews,

INTERNATIONAL

Agenda

Introductions

An Additive Manufacturing Primer

AMB Focus is Aerospace Production

AMB Preview

Case Studies Presentations

Mr. Paul DellaNeve Corporate VP, Business Development

Ms. Laura Ely Manager, Additive Manufacturing

Mr. Francisco Vega VP, Sales & Marketing

Mr. Jesse Boyer Fellow, Additive Manufacturing

Material Usage Panel

Mr. Art Kracke VP, R&D and Business Development

Mr. Dean Hackett Vice President, AM&P

Material Usage Panel Themes

- 1. Emerging developments in materials
- 2. Price of Powder Metal (PM) and other AM materials
- 3. Material supply chain evolution in the future
- 4. Material suppliers influence on process / repeatability challenges
- 5. Intellectual property issues in AM
- 6. Industry standards and specs

Productivity Panel

Mr. Scott Sevcik Manager, A&D Business Development

Mr. David Wilckens Director of Business Development, Aerospace

Mr. Andrew Snow SVP, EOS North America

Dr. Ming Zhou VP, FE Solvers & Optimization

Productivity Panel Themes

- 1. Laydown / build rate improvement
- 2. Set up / changeover time reduction
- 3. Post processing reduction
- 4. Inspection time reduction / In-situ imaging etc.
- 5. Efficient design / optimization

Certification Panel

Dr. Michael Gorelik
Chief Scientist & Technical Advisor

Mr. David Hills Director, Research & Technology

Mr. Michael Hayes
Technical Lead Engr., AM R&D

Mr. Richard Merlino President, ADDAERO

Certification Panel Themes

- 1. Challenges in AM metal part certification
- 2. Lessons from history
- 3. Industry standards & specs
- 4. Safety margins
- 5. Assembly vs. part certification

Thanks and Questions

Vivek Saxena
Vice President, ICF Aviation
Aerospace Operations & Supply Chain Practice
+1 734 249 0961
vivek.saxena@icfi.com