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The past decade has seen significant research and regulatory initiatives devoted to the ultimate 

objective of supplanting in vivo toxicity studies with more humane and less expensive in vitro assays. 

The same period has witnessed considerable interest in toxicity prediction using quantitative structure 

activity relationship (QSAR) data. Numerous studies have shown both the potential and limitations of 

toxicity predictions based on both in vitro and QSAR data. Transcriptomic data generated using 

microarray data and next generation sequencing platforms offer a potentially rich set of predictors of 

cellular responses including toxic responses, but its potential for empirical predictions is less well 

studied. We propose and demonstrate a framework by which complex transcriptomic datasets can be 

transformed to a structure that may be combined with available data on animal testing to apply machine 

learning-based toxicity prediction. Specifically, we acquired transcriptome data from the NCBI Geo 

database for chemicals for which animal toxicity data were also reported in EPA’s ToxRefDB database. 

We converted the toxicogenomics data to a set of predictors corresponding to gene groups with values 

reflecting levels of gene up-regulation or down-regulation. This approach considers each gene 

expression change as a unique feature, and therefore does not require any a priori knowledge of gene 

ontologies or pathways to infer relationships. Using this training dataset, we used a range of appropriate 

machine learning algorithms to predict toxicity at alternative levels of exposure concentrations, exposure 

duration, and cell types. We assessed model performance using 5-fold cross validation and found F1-

scores ranging from 55% to 90% for alternative models. We discuss our findings and contrast the 

potential of the toxicogenomics and machine learning-based empirical prediction with traditional 

methods of assessing toxicity based on genomics data.

Abstract

 Previously, we assessed the value of both in vitro assay and quantitative structure activity relationship (QSAR) data in

predicting in vivo toxicity using numerous statistical models. (The Role of Feature Selection and Statistical Weighting in

Predicting In Vivo Toxicity Using In Vitro Assay and QSAR Data, Wignall, J., Martin, M., Varghese, A., Trgovcich, J.

Society of Toxicology Meeting, 2016).

 Incorporation of feature selection into our earlier models shows that some types of biological data are more useful than

others for toxicity prediction.

 We therefore set out to test whether high throughput datasets such as genomic, transcriptomic, proteomic, lipidomic or

metabolomic data could be applied to toxicity prediction.

 The goal of this study was to develop a framework by which complex transcriptomic datasets can be

transformed to a structure that may be combined with available data on animal testing to apply machine

learning-based toxicity prediction.

 In addition, we set out to test the hypothesis that ToxML models can identify gene expression “fingerprints” of

toxicity within the dataset of global gene expression changes in response to exposure to toxicants.

Cross Validation

Animal toxicity data was joined to gene expression data by chemical for each array platform. Each row represented a 

chemical at various doses and exposure durations. Binarized LOAELs from ToxRefDB and fold change of each gene were 

joined to toxicity data in columns. The model performance results are obtained by means of five fold cross validation.

Independent Validation

Results were derived by fitting the model on one dataset (e.g., 5424 platform crosswalk) to predict toxicity based on 

differential gene expression in the other datasets (e.g., crosswalk using 5425 platform dataset). This approach provides a 

more stringent analysis of the toxicity prediction models relative to the cross validation approach. Delta F1 values were 

<0.025 for 444 toxicity endpoints.

Validation against Random Predictors

In this approach, a random number vector the same size as the predictor transcriptomics dataset for the cross-validation 

approach was used to build a model on the 5424 dataset.
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 Transcriptome data obtained from NCBI GEO, accession GSE59927 (deposited by NIEHS).

 Rat tissues tested: bone marrow, brain, heart, intestine kidney, liver, spleen, and muscle. Rat hepatocytes were also

tested.

 Gene expression changes were measured using GE Healthcare/Amersham Biosciences CodeLink™ UniSet Rat I

Bioarray (platforms included GPL5424, GPL5425, and GPL5426). Each platform harbors over 10,000 gene probes.

 This dataset includes gene expression changes in rats exposed to various toxicants including Acetaminophen, Aspirin,

Busulfan, Diethylstilbestrol, Progesterone, Methotrexate, Clofibrate, N,N-Dimethylformamide, Mifepristone,  Theophylline,

Coumarin,  4-Nonylphenol,  1,4-Dichlorobenzene,  4-Chloroaniline,  Diethanolamine,  4-Octylphenol, Chlorpyrifos,

Amitraz,  Dichlorvos,  Abamectin, Troglitazone,  Nitrobenzene,  4-Nitrotoluene.

 CASRN numbers were used to crosswalk gene expression data with binarized animal toxicity data for 1045 endpoints

obtained from ToxRefDB (October 2014 release);

ftp://newftp.epa.gov/comptox/High_Throughput_Screening_Data/Animal_Tox_Data

 For this preliminary analysis, the data crosswalk was joined by chemical (dose and exposure duration were not

considered in crosswalk). This preliminary approach enabled analysis of dose- and exposure duration-independent gene

expression features with predictive value in this model.

4 Model Validation

5 Model Performance

0

0.2

0.4

0.6

0.8

1

1.2

Cross Validation Independent
Validation

Compared to
Random Predictor

Dataset

Performance of Models Measured by 
F1 Score, ROC-AUC, and Accuracy

Average F1

Average ROC-AUC

Average Predictive Improvement over Random Baseline

0

50

100

150

200

250

Cross
Validation

Independent
Validation

Compared to
Random
Predictor

Number of Models with
F1>0.75

 Models successfully predict toxicity based on gene-expression values

 F1 and AUC scores demonstrate the model successfully predicts animal toxicity compared to a random predictor dataset.

6 Genes Highly Correlated with Toxicity

Table 1. Top 10 Differentially Expressed Genes 

Correlating with Toxicity*  (T Test > 0.95)

Orm1 orosomucoid 1

Frag1 FGF receptor activating protein 1

Fndc1 fibronectin type III domain containing 1

Ndrg1 N-myc downstream regulated gene 1

Klhdc8a kelch domain containing 8A

Ldhb lactate dehydrogenase B

Dusp5 dual specificity phosphatase 5

Ik IK cytokine

Col1a1 procollagen, type 1, alpha 1

Tpmt thiopurine methyltransferase

binding (GO:0005488)

catalytic activity (GO:0003824)

receptor activity (GO:0004872)

signal transducer activity (GO:0004871)

structural molecule activity (GO:0005198)

transporter activity (GO:0005215)

calcium-binding protein (PC00060)

cell adhesion molecule (PC00069)

cell junction protein (PC00070)

chaperone (PC00072)

cytoskeletal protein (PC00085)

defense/immunity protein (PC00090)

enzyme modulator (PC00095)

extracellular matrix protein (PC00102)

hydrolase (PC00121)

ligase (PC00142)

membrane traffic protein (PC00150)

nucleic acid binding (PC00171)

oxidoreductase (PC00176)

receptor (PC00197)

signaling molecule (PC00207)

structural protein (PC00211)

transcription factor (PC00218)

transfer/carrier protein (PC00219)

transferase (PC00220)

transmembrane receptor 
regulatory/adaptor protein (PC00226)

transporter (PC00227)

T-Tests for each gene for each outcome if the mean

gene expression values were different across outcomes

(0/1, toxic/non-toxic). 7673 genes had T values >0.5.

These genes were examined for Molecular Functions

and Protein Classes using Panther Classification System

http://www.pantherdb.org/geneListAnalysis.do

* Excludes ESTs, hypothetical, and predicted genes

Table 2. Most Frequently Identified Genes 

Represented in Multiple Models

DNA (cytosine-5-)-methyltransferase 1

nerve growth factor receptor (TNFRSF16) associated protein 1

uromodulin

paraoxonase 1

ubiquinol cytochrome c reductase core protein 2

BCL2-associated transcription factor 1

calbindin 1

oligodendrocyte transcription factor 1

Homeobox protein Hox-D8 (Hox-4.3) (Hox-5.4) (DBSS)

defensin beta 1

histamine N-methyltransferase

solute carrier family 22 (organic cation transporter), member 2

transmembrane protein 8 (five membrane-spanning domains) (DBSS)

phospholipase D2

cubilin (intrinsic factor-cobalamin receptor)

klotho (Mm.) (DBSS)

aquaporin 4

serine dehydratase

apolipoprotein A-II

SH3 and cysteine rich domain 3 (DBSS)

hydroxysteroid 11-beta dehydrogenase 2

binding (GO:0005488)

catalytic activity (GO:0003824)

hydrolase (PC00121)

transfer/carrier protein (PC00219)

Frequency Distribution of the Most Influential Genes

60 genes were identified that correlated with toxicity in multiple datasets. A subset is shown in Table 2. Many genes 

represented at high frequency are known to be associated with toxicity to chemical exposure. In addition, many interesting 

genes were identified that may shed new light on toxicological pathways.

These 60 genes were also analyzed using PANTHER Classification System. Molecular functions including binding and 

catalytic activity, and protein classes including hydrolases and carrier proteins were highly represented in the gene set.  The 

PANTHER Overrepresentation Test also identified fatty acid metabolism and lipid metabolism as processes highly 

represented by this gene set.

We successfully developed models to predict animal toxicity data using transcriptomic datasets 

 These models performed extremely well in validation tests using multiple methods

 When applying a stringent independent validation test, the model correctly correlated changes in

gene expression to 444 animal toxicity endpoints.

This approach also enabled identification of differentially expressed genes that correlate with toxicity

 Preliminary findings suggest this approach may be useful in identifying chemical-specific gene

expression fingerprints that could be applied to developing novel toxicity prediction tools

 Identification of expected (Paraoxonase 1) and unexpected (Orosomucoid 1) genes associated with

toxicity may shed new light on pathways of toxicity

Conclusions

1. Increase the size of the training and test transcriptomic datasets

2. Test whether model performance can be enhanced by incorporation of artificial intelligence

computational methods

3. Conduct analysis of effects of dose, route, and exposure duration on models

4. Ascertain model performance using transcriptome data from different cell and tissue types (e.g., cell

culture, PBMC)

5. Expand models to incorporate lipidomic, proteomic, and metabolomic datasets

Future Directions


