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Read-Across
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Two parts: 

 The justification for the chemical 

grouping

 The endpoint data used for target 

chemicals

–Direct use of source experimental data

–Translation or adaptation of source 

experimental data

–Combination of predicted and 

experimental data

–Predicted data
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Overview
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BMDs vs. NOAELs

 Using experimental data for read-across

QSAR

 Addressing the potential lack of experimental 

data

Read-Across

 Using QSAR methods for quantitative read-

across

 Incorporating dose-response information

BMDs QSAR

Read-

Across



Points of Departures Can be Used in Decision Making
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Quantitative Dose-Response Assessment

BMD

BMDL

NOAEL = No observed adverse effect level

LOAEL = Lowest observed adverse effect level

BMD = Benchmark dose

BMDL = Benchmark dose lower confidence limit



Benchmark Dose: A Data-Driven POD
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But there are limitations to BMDs:

• Time-intensive

• Complex

• Not all data amenable to modeling

CancerNon-Cancer



Standardized Calculation of BMDs and BMDLs for a Large 
Number of Chemicals
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*Under contract with SRC, Inc.

**Available for download from: https://www.epa.gov/bmds/download-benchmark-dose-software-bmds  and https://www.icf.com/solutions-and-apps/bmds-wizard

Collected* 880 dose-response datasets for 

352 unique chemicals with Toxicity Value(s) (e.g., RfD, OSF)

• ~75% of collected datasets can be modeled with BMDS

• Batch-calculated BMD/Ls available for over 300 chemicals

See Wignall et al., 2014



New! BMDS Python Interface and Web Server

BMD 

Correlation

BMDL 

Correlation

0.9965 0.9843
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 If you have your own dataset(s) of interest…

 Batch process dose-response data using the 

U.S. EPA BMDS software:

 The BMDS python interface package you can 

use on your own computer to run your datasets

 The BMDS webserver package you can use to 

create automated pipelines and integrate with 

other websites

 Standard Python package designed to 

integrate into workflows for ease of use

 Validated with Wignall et al. dataset

Google “python” + “BMDS”

For Python developers, "pip install bmds"

https://github.com/shapiromatron/bmds/blob/m

aster/notebooks/2014-wignall-ehp-rerun.ipynb

https://github.com/shapiromatron/bmds/blob/master/notebooks/2014-wignall-ehp-rerun.ipynb


Lessons Learned

BMD/Ls are useful as points of departure

BMD/Ls can be calculated in a standardized way VERY quickly

 These batch-calculated BMD/Ls can be used for many purposes, 

including:

 Evaluating weight of evidence for a chemical, such as across multiple studies or 

multiple effects

 Interpreting or using high throughput data, including screening assays or 

transcriptomics

 Serving as datasets for QSAR modeling or read-across evaluations
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Data Exist for Many Types of Toxicity Values
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Toxicity value type Toxicity value name

Number of 

compounds with a 

toxicity value

Oral exposure non-

cancer

Reference Dose (RfD) 668

No Observed Adverse Effect Level (NOAEL) 487

Benchmark Dose (BMD) 136

Benchmark Dose Lower Level (BMDL) 136

Oral exposure 

cancer

Oral Slope Factor (OSF) 300

Cancer Potency Value (CPV) 223

Inhalation exposure 

(non-cancer and 

cancer)

Reference Concentration (RfC) 149

Inhalation Unit Risk (IUR) 148

Sources: Integrated Risk Information System; Office of Pesticide Programs; Provisional Peer-

Reviewed Toxicity Values; Agency for Toxic Substances and Disease Registry; California EPA; 

Health Effects Assessment Summary Tables (EPA)



Considerations when Evaluating QSAR Performance

Model performance should be calculated based on external 

datasets as much as possible (Tropsha et al., 2003)

Model performance is limited by how “good” the 

experimental data is (Lo Piparo et al., 2014)

 “Prediction errors cannot be better than experimental variability”

Model performance is improved by using both larger datasets 

and closely related datasets (McLellan et al., 2011)

 These considerations have implications for predicting in vivo outcomes for 

environmental chemicals, where data is limited and variable.
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Objectives to Build Useful and Predictive Models

1. Predict continuous outcomes that are of use to decision 

makers, including PODs.

 Used RfD; NOAEL; BMD; BMDL; OSF; CPV; RfC; and IUR data

2. Facilitate transparency and communication by using 

publicly available chemical descriptors, easy to understand 

algorithms, and external validation

 Descriptor types: cdk + ISIDA  Consensus model

 Algorithm: Random Forest in Python

 Validation: 5-fold external cross-validation

3. Provide data through accessible online portals 

 Used online portal ChemBench* to build models

Models and predictions available through ToxValue.org
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Carolina Cheminformatics Workbench, developed by the Carolina Exploratory Center for Cheminformatics Research (CECCR); https://chembench.mml.unc.edu/home



Model Performance Varies Across Toxicity Value Type
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Toxicity value

(# of compounds)

Consensus 

model Q2

RfD (668) 0.48

NOAEL (487) 0.51

BMD Non-Cancer (136) 0.34

BMDL Non-Cancer (136) 0.26

OSF (300) 0.43

CPV (223) 0.38

RfC (149) 0.55

IUR (148) 0.38

*All models were shown to perform significantly better than chance

Distribution of Observed Values



Even Models with Low Predictivity Provide Information
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BMD Non-Cancer

Statistically 

significant 

improvement 

in model 

performance 

over predicting 

the mean

Toxicity value

(# of compounds)

Consensus 

model Q2

p-value for 

improvement 

over average

RfD (668) 0.48 < 0.0001

NOAEL (487) 0.51 < 0.001

BMD NC (136) 0.34 0.014

BMDL NC (136) 0.26 0.12

OSF (300) 0.43 < 0.0001

CPV (223) 0.38 < 0.0001

RfC (149) 0.55 < 0.001

IUR (148) 0.38 < 0.001

Distribution of Observed Values



QSAR Models In the Context of Baseline Expectations of 
Model Uncertainty
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*As reported in previous analyses, source: Matt Martin, Personal Communication
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Uncertainy Around Model PredictionsUncertainty around model 

predictions can be 

benchmarked against ability 

to predict rat chronic lowest 

effect levels (LEL) from rat 

subchronic LELs or other 

models.

Consensus models reduce 

uncertainty around 

predictions compared to 

other model types. 
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Online Portal for QSAR Predictions
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ToxValue.org Step 1: Enter 
Compound 
Information

Step 2: Verify 
Chemical 
Name and 
Structure

Step 4: Export 
Results

Step 3: Look Up 
Toxicity Values 

or Make 
Predictions

Questions? conditionaltoxvalue@gmail.com



Read-Across Example
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Diethylene glycol ethers (Di EGEs)

Diethylene glycol ethyl ether 

(DGEE, CAS 111-90-0 )

Diethylene glycol 

monobutyl ether (DEGBE, 

CAS 112-34-5)

Diethylene glycol propyl ether 

(DGPE, CAS 6881-94-3)

Diethylene glycol hexyl ether 

(DGHE, CAS No. 112-59-4)

NOAEL: 167 mg/kg-day based 

on kidney and liver effects in 

pigs

NOAEL: 50 mg/kg-day for 

anemia in rats

50 mg/kg-day

Chemical

C
ri

ti
c
a
l 

N
o

 E
ff

e
c
t 

L
e
v
e
l

50 mg/kg-dayDose Incidence

0 0/3

167 0/3

500 1/2

1117 1/1

Dose # Mean SD

0 10 9.27 0.35

50 10 9.13 0.22

250 10 8.94 0.34

1000 10 8.53 0.31

? ?

167 mg/kg-day 167 mg/kg-day

Experimental values



Read-Across Example
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NOAEL: 167 mg/kg-day based 

on kidney and liver effects in 

pigs

Chemical

BMD 222 mg/kg-day

BMDL 81.4 mg/kg-day 
BMD 443 mg/kg-day

BMDL 45.2 mg/kg-day

256

7.66 9260

BMD (mg/kg) 

38.3

0.91 1900

BMDL (mg/kg) 

BMD (mg/kg) 

BMDL (mg/kg) 

1.17

49.07

2440

185

5.56 6710

C
ri
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a
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P
o
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o
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D
e
p

a
rt

u
re NOAEL: 50 mg/kg-day for 

anemia in rats

Diethylene glycol ethyl ether 

(DGEE, CAS 111-90-0 )

Diethylene glycol 

monobutyl ether (DEGBE, 

CAS 112-34-5)

Diethylene glycol propyl ether 

(DGPE, CAS 6881-94-3)

Diethylene glycol hexyl ether 

(DGHE, CAS No. 112-59-4)

Diethylene glycol ethers (Di EGEs)
Experimental values

Predicted values



Additional BMD Data Coming…
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Assumptions inherent in aggregating 

various systemic toxicity endpoints into 

one dataset

 The more the homogenous the better, but 

balanced against need for robust training 

sets

 Limited in vivo data for model building

However, efforts underway to extract 

additional quantitative dose-response 

data from ToxRefDB animal studies

ToxRefDB 2.0 so far…

 Processed over 2100 chronic and 

subchronic studies

 Includes Office of Pesticide Programs Data Evaluation 

Records and National Toxicology Program studies

 200K quantitative data points

NOAEL = 

1000 mg/kg
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• Treatment 

related?

• Critical effect?

Quantitative
• Sample size

• Effect value

• Time

Dose-response effect 

data

As reported 

in Abstract 

#1386, 

Watford et al.



Summary
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BMDs 

 Use when data are available

 More coming from ToxRefDB 2.0

 Open access Python tools

BMDs QSAR

Read-

Across

QSAR

 Build predictive models

 Access existing models on 

ToxValue.org

Read-Across

 Use a combination of experimental 

(when available) and predictions

 Quantify uncertainty

 Incorporate dose-response information



Thank you!
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